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We theoretically study the propagation of light in a disordered medium with nonlinear scatterers. We
especially focus on interference effects between reversed multiple scattering paths, which lead to weak local-
ization and coherent backscattering. We show that, in the presence of weakly nonlinear scattering, constructive
interferences exist in general betweenthreedifferent scattering amplitudes. This effect influences the nonlinear
backscattering enhancement factor, which may thus exceed the linear barrier two.
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Light transport inside a nonlinear medium gives rise to a
wide variety of phenomena, such as pattern formation, four
waves mixing, self-focusing effects, dynamical instabilities,
etc.f1g. These effects are well described and understood with
the help of an intensity dependent susceptibility, e.g.,xs3d

nonlinearity. However, in these approaches, one usually dis-
cards the fact that interference phenomena in disordered sys-
tems may significantly alter wave transport properties. In-
deed, considering the return probability to a given point, all
scattering paths are now closed loops. Then thetwo-wave
interference between amplitudes contra-propagating along
these loops typically increases the return probability by at
most a factor of 2, inducing a decrease of the diffusion con-
stant sthe weak localization effectd. How nonlinear effects
affect weak localization is basically unknown and the present
paper is aimed at showing that this could be more important
than naively expected. Coherent random lasersf2g are prob-
ably the most striking systems intrinsically combining both
nonlinear effects and disorder. Even if in this case one would
require an activesi.e., amplifyingd medium, a key point is the
understanding of the mutual effects between multiple inter-
ferences and nonlinear scattering.

An effect similar to weak localization iscoherent back-
scatteringsCBSd where an enhancement of the average in-
tensity scattered around the direction opposite to the incident
wave is observedf3g. In the linear scattering regime, CBS
also arises from a two-wave interference between amplitudes
entering and leaving the medium in opposite directions and
contrapropagating along all possible scattering paths. Thus
both the CBS and the weak localization are described by the
so-called “maximally crossed diagrams”f4g. The CBS en-
hancement factor, defined as the signal detected in the exact
backscattering direction divided by the diffuse background,
never exceeds two. This maximum value is reached if each
pair of interfering waves has the same amplitude, and if
single scattering can be suppressed. Previous studies of the
nonlinear regime have been restricted to the case of linear
scatterers embedded in a uniform nonlinear mediumf5–7g.
Here, it has been shown that the maximum enhancement
factor remains two.

As we will show in this paper, however, the situation
drastically changes in the presence of nonlinear scatteringsin
contrast to nonlinear propagationd. In particular, in the per-
turbative regime of at most one scattering event withxs3d

nonlinearity, CBS arises from interference between three am-
plitudes. Depending on the sign of the nonlinearity, this leads
to an increase or decrease of the nonlinear CBS enhancement
factor compared to the linear value two. Since the same
physics is at work for weak localization corrections to trans-
port, a corresponding change of the diffusion constant is ex-
pected, too. Because, for photons, CBS is easier to observe
than weak localization, we specifically concentrate on the
former.

In this paper, we calculate CBS by a dilute gas of nonlin-
ear scatterers. We assume that the cross section of a single
scatterer situated at positionr inside the disordered medium
depends on the local intensityIsr d as follows:

ssr d = s0f1 + aIsr dg, s1d

wheres0 denotes the linear cross section, anda quantifies
the strength of the nonlinearity, which is proportional to the
xs3d coefficient of the scattering material. The local intensity
Isr d is the intensity due to all external sources, i.e., the light
radiated by all other scatterers and the incident light penetrat-
ing the medium untilr without being scattered. For future
convenience, we measureIsr d in units of the incident inten-
sity I in sbefore entrance into the mediumd. Thus,a is dimen-
sionless and also proportional toI in. The general forms1d of
the nonlinear cross section is obtained under the assumption
of small scatterers, i.e., constant local intensity inside the
scatterer, weakxs3d nonlinearitysi.e., higher-order terms like
I2 negligibled, and isotropic scattering. The following treat-
ment can also be generalized to the nonisotropic case, how-
ever. At the end, we will present numerical results where we
take into account the polarization state of the light field.

Besides the scattering cross section, the second ingredient
needed for the description of a multiple scattering process is
the propagation between two scattering events. Under the
condition that no other scattering event occurs in between,
the disorder averaged intensity propagator is given by an
exponentially damped spherical wave

Psr ,r 8d =
e−ur−r8uk1/,l

4pur − r 8u2
. s2d

Here,k1/,l denotes the mean value of the inverse mean free
path along a straight line connecting the two scattering
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events atr and r 8. In the linear casesa=0d, the mean-free-
path,0 is constant, and is related via 1/,0=Ns0 to the linear
cross sections0 and the scatterer densityN. This relation is
a consequence of energy conservation, which ensures that
the exponential attenuation of propagating field modes origi-
nates solely from scattering into other modes. Similarly,
since we assume energy conservation for the nonlinear case,
too si.e., no absorbing or amplifying scatterersd, we can also
derive the nonlinear mean free path from the nonlinear scat-
tering cross section, Eq.s1d. Since the nonlinear contribution
to the total intensityssr dIsr d scattered fromr is, according
to Eq. s1d, proportional toaIsr d2, we need to know the
disorder-averagedsquared intensity for this purpose. In a
perturbative expansion up to first order ina, we can here
replaceIsr d by its linear counterpartI0sr d, whose fluctuation
properties are well knownf8g. By assuming uniformly dis-
tributed phases for the fields radiated by the other scatterers
swhich is valid in the case of a dilute mediumd, one obtains

I0
2sr d = 2I0sr d2 − se−z/,0d2. s3d

The second term, withz the distance from the boundary of
the medium tor along the incident direction, represents the
squared intensity of the incident, coherent mode. It accounts
for the fact that—in contrast to the diffuse light—theslineard
coherent mode intensity does not fluctuate for different real-
izations of the disorder. By equating the intensity loss due to
propagation with the scattered intensitysi.e., employing en-
ergy conservationd, we therefore obtain from Eq.s3d differ-
ent expressions for the mean free paths for diffuse and co-
herent light

1

,sr d
=

1

,0
s1 + 2aI0sr dd, s4d

1

,csr d
=

1

,0
s1 + 2aI0sr d − ae−z/,0d. s5d

We can now write down a nonlinear radiative transfer
equation for the average intensityIsr d inside the disordered
medium. Radiative transport is obtained by representingIsr d
as the incoherent sum of the coherent incident field mode
plus the diffuse light radiated from all individual scatterers

Isr d = e−zk1/,cl + NE
V

dr 8Psr ,r 8d 3 ssr 8dIsr 8d, s6d

wherek1/,cl denotes the mean value of the inverse coherent
mean free path, Eq.s5d, along the corresponding path of
length z. In the second term, representing the diffuse light,
the disorder average is decorrelated. This is justified by the
fact that correlations between intensities at different posi-
tions sseparated much further than the optical wavelengthd
can be neglected in the case of a dilute mediumf4g. In the
casea=0, Eq. s6d reduces to the familiar linear radiative
transfer equationf4g, whose iterative solution yieldsI0sr d. To
proceed, we expand Eq.s6d up to the first order in the non-
linearity parametera. Introducing Eq.s3d, we obtain a closed

equation for the average intensityĪ, which we solve by itera-

tion. Finally, the average intensity of the backscattering sig-
nal follows via

L = NE
V

dr

A
e−zk1/,l 3 ssr dIsr d, s7d

with A the transverse area of the medium. Expanding again
to the first order ina, we identify the linear and nonlinear
part, L=L0+L1, respectively. According to whethera origi-
nates from the cross sections or the mean-free-path, sor
,cd, the latter splits into a nonlinear scattering and nonlinear
propagation component, i.e.,L1=L1

sscd+L1
sprd. For a slab ge-

ometry of lengthL, i.e., slineard optical thicknessb=L /,0,
we obtain

L0 =E
0

b

dzI0szde−z, s8d

L1
sscd = aE

0

b

dzI0szdf2I0
2szd − e−2zg, s9d

L1
sprd = − aE

0

b

dzI0szdf2I0
2szd − 2I0

2sbd − e−z + e−2zg,

s10d

where we have introduced theslineard optical depthz=z/,0.
Note that the first terms in Eqs.s9d and s10d cancel each
other. This is not surprising if one keeps in mind that energy
conservation ensures the total outgoing flux to equal the in-
coming one. Thus, the nonlinear contribution vanishes even
completely, if one considers the total detection signal, inte-
grated over all directions in forward and backward direction.
We have checked that Eqs.s8d–s10d are also obtained by
using diagrammatic scattering theoryf9g, if only the so-
called “ladder” diagrams are retained—thus neglecting recur-
rent scattering effectsf10g and interferences between differ-
ent scattering paths—and if, in addition, all diagrams with
more than one nonlinear scattering event are discardedssee
Fig. 1d.

On top of the above background intensity, a narrow inter-
ference cone of heightC is observed, originating from the
interference between reversed scattering paths, which is de-

FIG. 1. In the perturbative approach, we assume a single non-
linear shd, but arbitrarily many linear scattering eventssPd. The
nonlinear event symmetrically connects two linear propagators with
each other. One of them finally reaches the detector placed in back-
scattering direction.

WELLENS et al. PHYSICAL REVIEW E 71, 055603sRd s2005d

RAPID COMMUNICATIONS

055603-2



scribed by the so-called maximally crossed diagrams. Due to
time reversal symmetry, each maximally crossed diagram has
the same value as the corresponding ladder diagram. In the
linear case, there is exactly one reversed counterpart for each
scattering path, except for those exhibiting only a single scat-
tering event. Hence, the cone height equals the background,
provided that single scattering is removed from the latter. In
the presence of nonlinear scattering, however, there may be
either two or three interfering amplitudes. As exemplified in
Fig. 2, this is due to the fact that two linear propagators are
symmetrically connected by the nonlinear event, which per-
mits, in general, two different possibilities to reverse the
propagator that finally reaches the detector. In the expression
for the background component, Eq.s9d, the three cases of
Fig. 2 can be identified by writing the local intensityI0
=exps−zd+ Id as a sum of the coherent and diffuse part, re-
spectively. Then, all terms of at least second power inId
correspond to the casescd, those linear inId to casesbd, and
the remaining ones to casesad. From this decomposition,C is
easily obtained, since the ratio of the cone height to the back-
ground depends solely on the number of interfering ampli-
tudes. In particular, the three-amplitudes casescd contributes
to the interference cone twice as much as to the background.
In the two-amplitudes casesbd, a small complication arises,
since the right-hand amplitude of Fig. 2sbd is twice as large
as the left-hand onef11g. Only in the latter one, both propa-
gators arriving at the nonlinear scattering event originate
from the coherent mode, and hence the asymmetry is related
to the different fluctuation properties of diffuse and coherent
light, expressed by Eq.s3d. Here, the ratio between cone
height and background is obtained ass132+231d / s131
+232d=4/5. Finally, the single scattering termssad do not
contribute to the cone, and must be removed from Eq.s9d.
Thereby, we obtain

C1
sscd = 4aE

0

L

dzfI0
3szd − 2I0szde−2z + e−3zg. s11d

Concerning nonlinear propagation, interference between the
three amplitudes does not occurf5–7g. Formally, the reason
is that in this case the two incoming propagators are not
connected symmetrically by the nonlinear scattering event.
Instead, they can physically be distinguished from each
other, as one of themsthe “probe”d keeps the direction of
propagation, whereas the other ones“pump”d is scattered.
Hence, there are only two interfering amplitudes, obtained
by reversing the path of the probe. Just as for the linear
component, it is sufficient to remove single scattering contri-
butions from the background, Eq.s10d.

The perturbative results derived above allow us to calcu-
late the CBS enhancement factorh=1+C/L up to the first
order in the nonlinearity coefficienta. In particular, we ob-
tain the first derivative ofhsad at a=0, which quantifies the
modification of CBS enhancement due to a small nonlinear-
ity. In our case, the strength of the nonlinearity is limited by
the perturbative assumption of at most one nonlinear scatter-
ing event. In order to estimate roughly its domain of validity,
we have analyzed the statistical distribution of the numberN
of scattering events in linear backscattering paths, by nu-
merical simulations with slab geometry. If we associate with
each scattering event a constant probability proportional toa
to be nonlinearsthereby neglecting the inhomogeneity of the
local intensityd, we find that the occurrence of two or more
scattering events can be neglected provided thatab2!1. Let
us note that a similar condition also ensures the stability of
speckle fluctuations in a nonlinear mediumf12g.

We want to stress that the above treatment, valid for scalar
point scatterers, can be extended to any kind of nonlinear
scatterer withxs3d nonlinearity. Specifically, we have ana-
lyzed the vectorial case, where the polarization of the light
field is taken into account. This case is especially interesting,
since in the helicity preservingshihd polarization channel
single scattering contributions are filtered out, thus realizing
the maximum linear enhancement factor two. Hence, any
deviation of the enhancement factor from two can unambigu-
ously be attributed to the nonlinear effect of interference be-
tween three amplitudes. Numerically, we have treated the
vectorial case by using a Monte Carlo method, where the
positions of the scattering events are randomly chosen.

The results for the scalar and vectorialshihd case are
shown in Fig. 3, as a function of the optical thicknessb.
Evidently, the slopem= udh /daua=0 increases withb, since a
nonlinear scattering event is more likely to occur at larger
optical thickness. Thus, for large optical thickness, a signifi-
cant change ofh results already from a small nonlinearitya.
In the vectorial case, the nonlinear influence onh is smaller.
The main reason for this is the following: Due its explicit
dependence on the polarization vectors attached to the two
incoming and outgoing propagators, the nonlinear scattering
amplitude does not remain invariant when exchanging a
single incoming and outgoing propagator.sOnly if all propa-
gators are reversed, invariance is guaranteed by time-reversal
symmetry.d This causes a polarization-induced loss of inter-

FIG. 2. In the presence of nonlinear scatteringshd, there may be
either sbd two, or scd three interfering amplitudes contributing to
enhanced backscattering, apart from single scatteringsad, which
only contributes to the background. In general, the casescd, which
corresponds to the maximum enhancement factor three, is realized
if either both incoming propagators, or one incoming and the out-
going detected propagator exhibit at least one linear scattering event
sPd besides the nonlinear one.
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ference contrast, i.e., a reduction of the coherent nonlinear
scattering componentC1

sscd sapproximately by a factor 3/4d.
Nevertheless, the effect of the three-amplitudes interference
still prevails, such that in total a positive slope is observed.
In particular, the CBS enhancement factor is predicted to
exceed the linear barrier two, if the sign of the nonlinearitya
is positive. Due to the close relation between CBS and weak
localization mentioned above, we thus expect that weak
localization—and possibly also strong localization—are fa-
cilitated by positive nonlinearities.

An alternative method to observe enhancement factors
larger than two is provided by using atomic scatterers. As a
specifically quantum mechanical property of the atom-
photon interaction, nonlinearity is here intrinsically related to
inelasticscattering, where the frequency of scattered photons
changes. On the one hand, inelastic scattering acts as a
source of decoherence between reversed scattering paths,
with ensuing decrease of the CBS enhancement factorf11g.
On the other hand, however, it allows to distinguish linearly
and nonlinearly scattered light in terms of its frequency.
Thereby, the linear componentsL0 andC0 can be filtered out
from the detection signal, so that the nonlinear effect of in-
terference between three amplitudes can manifest itself espe-
cially clearly, unspoiled by linear contributions. To minimize
decoherence, the frequency filter must be sufficiently narrow
and be put as close to the initial frequency as possible, but
far enough to filter out elastically scattered light. In this
limit, the backscattering enhancement factor is exclusively
given by the nonlinear scattering components derived above,
i.e., h=1+C1

sscd /L1
sscd. For sufficiently large optical thickness,

we thereby predict maximum values of the CBS enhance-
ment factor up to 3sscalar cased or 2.5 shih channeld.
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FIG. 3. Modificationm= udh /daua=0 of the CBS enhancement
factorh induced by a small nonlinearitya, for backscattering from
a slab of optical thicknessb, in the scalar casessolid linesd and the
hih polarization channelsdotted linesd. For a large optical thick-
ness, already a small nonlinearity leads to a significant increasesor
decrease, depending on the sign ofad of h. In thehih channel, the
nonlinear CBS modification is smaller than in the scalar case, as a
consequence of decoherence due to polarization effects.
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